metric driven (2) – select metrics strategy

对metric方案的选择:

  • 功能性角度:
    单纯衡量metric方案,大多已经满足基本功能,但是除此之外,更需要考虑功能的完整性:
    (1) 是否支持硬件层次(CPU、Memory、Disk、Network等)的数据收集和展示;(2) 是否对常见服务有更轻便的支持。

市场上流行的服务都比较集中,例如数据库有oracle、mysql,缓存有memcached、redis等,服务器容器有tomcat,jetty等,消息中间件有rabbitmq、kafka。所以很多metric系统除了通用方案外,还额外对这些常见服务有更轻便的直接接入支持。

(3) 是否集成Alert功能

Metrics里面含有的数据越丰富可以做的事情也越多:
a. 根据主机metric,判断主机故障,例如磁盘是否快满了;
b. 根据错误信息判断是否当前存在故障;
c. 根据metric趋势,判断是否需要扩容;
d. 根据用户行为信息判断是否存在恶意攻击,

当判断出这些信息,仅仅展示是不够的,更应该是提供预警和报警功能,以立马能够解决。同时报警的通知方式是否多样化(邮件、电话、短信、其他及时通信系统的集成)或者进行了分级(轻重缓解不同,不同方式)。

有了更丰富的功能,则避免多种方案的东拼西凑,有利于一体化。

  • 扩展性角度:
    (1) 容量是否具有可扩容性:
    当数据量小时,传统的Sql数据库甚至excel、csv都能存储所有的历史metric数据,并能满足查询等需求,但是除非可预见业务量永不会有突破,否则初始调研时,就应该考虑容量可扩展的方案。例如influxdb单机版是免费的,但是想使用集群模式的时候就变成了收费模式。所以在不喜欢额外投资,只热衷开源方案的企业,长远计划时则不需要选择这类产品。

(2) 切换新方案或者新增多层方案时,方案的可移植性:
很少有一种metric系统能满足所有需求,特别是定制化需求比较多的时候,而对于初创公司而言,可能更换metric系统更为频繁,所以假设选择的方案本身具有强耦合性,不具有可移植性时,就会带来一些问题:
a. 并存多种metric系统,每种方案都对系统资源有所占用

例如方案A通过发http请求,方案B通过写日志,方案C通过直接操作数据库。最后系统本身变成了metric系统的战场。

b. 切换新老metric系统时,需要做的工作太多。

参考问题a,每种方案的方式都不同,例如使用new relic时,需要的是绑定一个new relic jar,根据这个jar定制的规则,不见得适合其他的metric方案,例如influxdb.所以迁移时,不仅要重新修改代码,甚至修改数据结构。
所以方案本身的扩展性不仅体现在本身容量要具有可扩展性,还在于方案是否容易切换或者与其他方案并存,并与业务系统解耦,所以在实际操作时,可能需要加入一个中间层去解耦,例如常见的ELK增加一个kafka来解耦和隔离变化。

  • 技术性能角度:

1. Invasive->Non-invasive
从技术角度看,选择的metric方案本身是否具有侵入性是需要考虑的第一要素,一般而言,侵入性方案提供的功能更具有可定制性和丰富性,但是代价是对系统本身会有一定的影响,例如new relic,除了常用的功能外,还能根据不同的数据库类型显示slow query等,但是它采用的方案是使用java agent在class 被加载之前对其拦截,已插入我们的监听字节码。所以实际运行的代码已不单纯是项目build出的package。不仅在业务执行前后做一些额外的操作,同时也会共享同一个jvm内的资源:例如cpu和memory等。所以在使用new relic时,要求“开辟”更多点的内存,同时也要求给项目本身的影响做一定的评估。当然new relic本身也考虑到,对系统本身的影响,所以引入了“熔断器”来保护应用程序:

com.newrelic.agent.config.CircuitBreakerConfig:

	this.memoryThreshold = ((Integer) this.getProperty("memory_threshold", Integer.valueOf(20))).intValue();
	this.gcCpuThreshold = ((Integer) this.getProperty("gc_cpu_threshold", Integer.valueOf(10))).intValue();

com.newrelic.agent.circuitbreaker.CircuitBreakerService:

内存控制:

double percentageFreeMemory = 100.0D * ((double) (Runtime.getRuntime().freeMemory()
						+ (Runtime.getRuntime().maxMemory() - Runtime.getRuntime().totalMemory()))
						/ (double) Runtime.getRuntime().maxMemory());

CPU控制:

获取年老代:

GarbageCollectorMXBean lowestGCCountBean = null;
Agent.LOG.log(Level.FINEST, "Circuit breaker: looking for old gen gc bean");
boolean tie = false;
long totalGCs = this.getGCCount();
Iterator arg5 = ManagementFactory.getGarbageCollectorMXBeans().iterator();

while (true) {
	while (arg5.hasNext()) {
		GarbageCollectorMXBean gcBean = (GarbageCollectorMXBean) arg5.next();
		Agent.LOG.log(Level.FINEST, "Circuit breaker: checking {0}", gcBean.getName());
		if (null != lowestGCCountBean
				&& lowestGCCountBean.getCollectionCount() <= gcBean.getCollectionCount()) {
			if (lowestGCCountBean.getCollectionCount() == gcBean.getCollectionCount()) {
				tie = true;
			}
		} else {
			tie = false;
			lowestGCCountBean = gcBean;
		}
	}

	if (this.getGCCount() == totalGCs && !tie) {
		Agent.LOG.log(Level.FINEST, "Circuit breaker: found and cached oldGenGCBean: {0}",
				lowestGCCountBean.getName());
		this.oldGenGCBeanCached = lowestGCCountBean;
		return this.oldGenGCBeanCached;
	}

	Agent.LOG.log(Level.FINEST, "Circuit breaker: unable to find oldGenGCBean. Best guess: {0}",
			lowestGCCountBean.getName());
	return lowestGCCountBean;
}
				
 

年老代GC时间占比计算:

	long currentTimeInNanoseconds = System.nanoTime();
	long gcCpuTime = this.getGCCpuTimeNS() - ((Long) this.lastTotalGCTimeNS.get()).longValue();
	long elapsedTime = currentTimeInNanoseconds - ((Long) this.lastTimestampInNanoseconds.get()).longValue();
	double gcCpuTimePercentage = (double) gcCpuTime / (double) elapsedTime * 100.0D;

2  Tcp -> Udp

使用tcp方式可靠性高,但是效率低,占用资源多,而使用udp可靠性低,但是效率高,作为metric数据本身,udp本身更适合,因为不是核心数据,丢弃少数也无所谓。

3 Sync->Async
同步方式直接影响业务请求响应时间,假设写metric本身消耗10ms,则请求响应也相应增加对应时间,但是使用异步时,不管是操作时间长的问题还是操作出错,都不会影响到业务流程。同时也容易做batch处理或者其他额外的控制。

4 Single-> Batch
对于metric数据本身,需要考察是否提供了batch的模式,batch因为数据内容更集中,从而可以减少网络开销次数和通信“头”格式的额外重复size等,同时batch方式也更容易采用压缩等手段来节约空间,毕竟metric数据本身很多字段key应该都是相同的。当然要注意的是过大的batch引发的问题,例如udp对size大小本身有限制,batch size过大时,操作时间会加长,是否超过timeout的限制。
以influxdb为例,使用udp模式的batch(小于64k)和single时,时间消耗延时如下表:

Mode\ms 300 500 800 1000
Single 34 85 111 173
batch 25 22 28 29
  • 总结

通过以上分析,可知选择一个metric系统不应该仅仅局限当前需求,而更应该从多个角度兼顾未来发展,同时对应用产生侵入性低、隔离变化、易于切换都是选择方案必须追求的要素,否则没有搞成想要的metrics却拉倒了应用则得不偿失。